If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w-3w^2+6=0
a = -3; b = 7; c = +6;
Δ = b2-4ac
Δ = 72-4·(-3)·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-11}{2*-3}=\frac{-18}{-6} =+3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+11}{2*-3}=\frac{4}{-6} =-2/3 $
| 2x+6=9+5 | | 20+8x=7x-21 | | 8=b/4.5 | | 60=b/3 | | 5(4x-33)=-25 | | 6(3x+4)÷12=5 | | 3x+10=53 | | 100-7x+4x-42=53+x+33-6x | | 3j+16=45 | | 9^(x-4)+50=93 | | 6b+4=0 | | -6(q+-10)=96 | | 5÷3y=10 | | 3x/5=4x-1 | | 12x-19=8x+33 | | (m+34)/8=9 | | x+24=325 | | -5x+8+16x+x=3x-12-x | | 325=x+24 | | 3x+3x+x=18.9 | | 4x+26=2+54 | | -3x+5=-9x | | 2a×4a=42 | | (x-3)÷25=100 | | 6x+6=-34-4 | | 10+45-7x+21=23-5x+25+2x | | 6x-7=3x+3 | | 80-37-6x+11=4x-9+2x+9 | | 4x-6x-12=-12x+8x+8 | | X-8x-21+3x=37-5x-79+4x | | (8x+1)+(3x+1)=180 | | v(13)=18500(0.90)^13 |